7.解:由题意得曲线C的方程为(x-2)2+(y-1)2=1.
又|AB|=2,故直线l过曲线C的圆心(2,1),则直线方程为y-1=x-2,
即x-y-1=0,故直线l的极坐标方程为ρ(cosθ-sinθ)=1.
8.解:化极坐标方程ρ=4cosθ为直角坐标方程x2+y2-4x=0,所以曲线C是以(2,0)为圆心,2为半径的圆.
化参数方程 (t为参数)为普通方程x-y+3=0.
圆心到直线l的距离d=,此时,直线与圆相离,
所以|MN|的最小值为-2=.
9.解:由ρ=4sinθ可得ρ2=4ρsinθ,
所以x2+y2=4y.
所以圆的直角坐标方程为x2+y2=4y,其圆心为C(0,2),半径r=2;
由ρsinθ=a,得直线的直角坐标方程为y=a,由于AOB是等边三角形,所以圆心C是等边三角形OAB的中心,若设AB的中点为D(如图).
则CD=CB·sin30°=2×=1,即a-2=1,所以a=3.
10.解:(1)C的普通方程为(x-1)2+y2=1(0≤y≤1).
可得C的参数方程为
(t为参数,0≤t≤π).
(2)设D(1+cos t,sin t).由(1)知C是以C(1,0)为圆心,1为半径的上半圆,因为C在点D处的切线与l垂直,所以直线CD与l的斜率相同,tan t=,t=.
故D的直角坐标为
,即.
① 凡本站注明“稿件来源:格伦教育”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:格伦教育”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。