9.解:设双曲线的方程为=1(a>0,b>0),
则a2+b2=()2=7.
由
消去y,得=1.
整理,得(b2-a2)x2+2a2x-a2-a2b2=0.(*)
由直线y=x-1与双曲线有两个交点知a≠b,
设M(x1,y1),N(x2,y2),
则x1和x2为方程(*)的根,
于是x1+x2=.
由已知得=-,
则=-,即5a2=2b2.
由得
故所求双曲线方程为=1.
10.解:(1)由|AF1|=3|F1B|,|AB|=4,
得|AF1|=3,|F1B|=1.
因为ABF2的周长为16,
所以由椭圆定义可得4a=16,
|AF1|+|AF2|=2a=8.
故|AF2|=2a-|AF1|=8-3=5.
(2)设|F1B|=k,则k>0,
且|AF1|=3k,|AB|=4k.
由椭圆定义可得|AF2|=2a-3k,|BF2|=2a-k.
在ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cosAF2B,
即(4k)2=(2a-3k)2+(2a-k)2-(2a-3k)·(2a-k),
化简可得(a+k)(a-3k)=0,
而a+k>0,故a=3k.
于是有|AF2|=3k=|AF1|,|BF2|=5k.
因此|BF2|2=|F2A|2+|AB|2,可得F1AF2A,
故AF1F2为等腰直角三角形.
从而c=a,所以椭圆E的离心率e=.
11.B 解析:将x=-c代入双曲线方程得A.
由ABE是直角三角形,得=a+c,
即a2+ac=b2=c2-a2,
整理得c2-ac-2a2=0.
∴e2-e-2=0,
解得e=2(e=-1舍去).
12.A 解析:可解方程t2cosθ+tsinθ=0,
得两根0,-.
不妨设a=0,b=-,
则A(0,0),B,
可求得直线方程y=-x,
因为双曲线渐近线方程为y=±x,
故过A,B的直线即为双曲线的一条渐近线,直线与双曲线无交点,故选A.
13.D 解析:因为椭圆的离心率为,
所以e=,c2=a2,a2=a2-b2.
所以b2=a2,即a2=4b2.
因为双曲线的渐近线为y=±x,代入椭圆得=1
即=1,
所以x2=b2,x=±b,y2=b2,y=±b.
则在第一象限的交点坐标为.
所以四边形的面积为4×b×b=b2=16.解得b2=5,
故椭圆方程为=1.
① 凡本站注明“稿件来源:格伦教育”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:格伦教育”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。